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BRITTLE CLEAVAGE OF A PIECEWISE-HOMOGENEOUS ELASTIC, MEDIUM* 

I.V. SIMONOV 

Stationary pre-Rayleigh motion of a rigid body along a straight line 
connecting two elastic half-planes with the formation of a crack and a 
cavern is investigated. The contact between the edges in a small zone of 
the edge of the crack and outside the cavern at a large distance from the 
wedge is taken into account by the method of joining asymptotic expansions. 
As is shown, the ratios between the characteristic lengths are, respectively, 
quite small and quite large parameters if the wedge velocity is not close 
to the Rayleigh velocity, which specifies the advisability of using such 
an approach. 

1. An absolutely blunt rigid wedge of thickness h(r). j z 1 < imoves without friction at a 
constant velocity c along the interface y = 0, 11 j < s of two elastic media occupying the 
half-plane y> 0 (medium 1) and y< 0 (medium 2) (Fig.1). A crack of length a - 1 is formed 
ahead of the wedge and a cavity for -x,<s<-1. The crack edges and the cavity do not 

y? 

interact and are force-free (an a prioriassumption). 
The sides of the wedue are comoletelv adiacent to - _ 
to medium. Total contact conditions are satisfied 
for z>a,y=O. 

Itis requiredtodeterminethe steady stress field 

0 ’ c,mj(r, Y) and the displacement field L',j(r,y) from 

Fig.1 the following boundary conditions (y = 0): 

u.!.. = hj' (x) - g, 012" = 0, 022' ,, 0, 1 z 1 < 1 (1 .I) 

0s~’ = 0, lU,l > 0, 1 < 2 < a_z < -1, [oh21 = [U,] = 0. 

z>a 

[L‘t(l)]=h(l), s lalz]/Jji;dr=O (k,m,j=i,2) 
-1 

Here hj = h,(r) is the equation of the wedge surface relative to some of its axes, 
are Holder-continuous functions, h = h, - h,,.h (I)< a 

h, (1) 

of rotation of the wedge axis, 
-1, Ihj’(s)1<1, lzl<i,q is the angle 

the subscript j defines the mediums, square brackets denote 
the jump in a quantity on passing from medium 1 into medium 2, 
differentiation, 

the prime denotes ordinary 
and the coordinate system is moving. 

It is convenient to express the stresses and the derivatives of the displacements in 
dynamic linear elasticity theory (the plane problem, steady subsonic mode) in terms ofanalytic 

functions Xm'(zkj) of the complex variable zk. = t i @,,yby means of formulas /l/ (representations 
close to the representations in /2/). On the interface z,~ = z 
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(1.2) 

where pj is the shear modulus, 
is a Rayleigh functions (cRJ, 

c,~ and c,J are the expansion and shear wave velocitites, R,(C) 
the unique positive roots of the Rayleigh equation R, (c) = 0, 

are the velocities of the natural surface waves cs = min (CRY, ~2~)). 
We will seek the solution in the energy class of functions with finite displacements 

everywhere. Then the following estimates hold for the behaviour of the functions r.,j(z) at 
singularities (2 = 2 - iy is an auxiliary variable): 

z-+00 (1.3) 

Zl = -1, z2 = I, zs = a, E > 0 (k = 1, 2, 3; m, j = 1. 2). 

We first examine an auxiliary problem for the functions xj(z) that removes theinhomogeneity 
in the first of conditions (1.1) 

b,jIm %j (2) = h,’ (2) f T, I z I < 1, Re xj (4 = 0, I = I > 1 

Taking account of (1.3), the unqiue solution of this particular Keldysh-Sedov problem 
takes the form /3/ 

After removing the state of stress given by a solution of the form x,j = O,kj = x1, the 

condition IIm ~~1 = 0 for 11 I< x and the conditions Im x2' = 0, IRe x21 = Oin the intervals 
supplementing each other to alnost the full real axis (we do not change the function notation) 
enable the following conclusion to be drawn when (1.3) is taken into account /4/: 

r.i’(z)=--%1?(5)E%l(;)r zp’(;)=~)E%?(I), y>b. (1.5) 

The bar denotes the complex conjugate. 
The conditions [Im 1~1 = 0, . . . follow directly from (1.5) if, in addition, the function 

%c2(z) is the analytic continuation of the function x2' (z) through the segment lzl< 1,y = 0. 
The converse can be shown by first writing the solutions from the class (1.3) for the following 

auxiliary boundary value problems for the functions %1? (z) (Y = 0): 

Im %I' = r (I). 13 i < x 

and the functions ;f2) (2, 

Im y.2) = 0, 1 I 1 / 1. Re ;z' = E (I). 15: j > 1 

where r(r) and S(I) are certain real functions satisfying the Hb'lder condition. 
Relationships (1.5) reduce the number of unknown functions to two. The fundamental 

problem, the Riemann-Hilbert problem /5/, is obtained from (1.1),(1.2), (1.4),(1.5): it is 
required to find a vector function % = (xl; 1,) from the class (1.3) that is holomorphic in the 
upper half-plane of 2 and satisfies the following conditions on the boundary y = 0: 

Im (Hz) = (f (I), 0). z 1; a.Im~1=Im~r=0,12~<~ (1.6) 

Im x1 = Re 7.* = 0, (5 < -1) v (1 (2 < 0) 

d=a,-a 2 < 0, P = b,, i b,,s g = b,l t- b,, . 

Additional conditions in the form of inequalities from (1.1) are to be confirmed by 
superposition of the solutions (l-4), and (1.61. Problem (1.3),(1.6) contains three kinds of 
boundary conditions and four singularities. The general method of constructing a closed 
solution of the related Riemann-Hilbert boundary value problem for vector functions with a 
greater number of kinds of boundary conditions than two is not known. A method.of solution 
is proposed in /4/ (in Cauchy type integrals) that extends to the case when the boundary 
conditions of the problem reduce to the form (1.61, where the first and third conditions of 
(1.6) can alternate on an arbitrary system of segments, "diluted" by a segment on which the 
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second condition in (1.6) is satisfied, by any method. 
Following /4/ we carry out such a sequence of actions. We continue the vector x(z) 

analytically through the segment 11 I< i. We map the 
conformally in the upper half-plane o = & + iq = z +- 

u* t&w:: ~U~~i'%e'~~l$_~i&h O 

Imz)C goes over into the exterior, and the half-plane ImZ< 0 into the interior of the 

semicircles [o 1 =I, Imw>O (Fig.2). We continue the vector x ((II) (without renotation) 

through the real axis according to the rule rk (0) = (-i)*+$-@j and we diagonalise the coef- 

ficient matrix of the conjugate being obtained for this problem. As a result of the linear 
substitution 

1 0 /- 
/ 1 .‘\ @ 

--+M _’ !,: : J,,,, -I A-’ f * 

Fig.2 

x1 = w, -L w,, x2 = s (W, - U’*) (s = lC4ip) 

we arrive at such a conjugate problem for the vector function w = (Ii',, W,) (we indicate 
narrowing on the axis x=0 from above (below) by the superscript plus (minus)): 

p.1 = ?-2-l = 4 g = f b @)I, E > A, g (5) = --g (IQ), 0 < 
E < A-' 

A = a - j/'-a' _ l,Ll= {E:O<E<A-'U !>A) 

L? = {E: E <o i .4-l< E< A}. 

Additional conditions of the problem include the continuation conditions 

umii (0) =u’,* IV, (0) = u. (6) (k, m = 1, 2; m # k) 

(1.7) 

(I.8 

(1.9) 

and estimates resulting from (1.3). 
The generalized conjugate problem (1.7)-(1.9) is equivalent to problem (1.3),(1.6), all 

the matrices are not degenerate for .O -< c < CR. The sole singularity of the problem (1.8), 
(1.9) from the ordinary Hilbert problem /5/ obtained from the Riemann-Hilbert problem, is 
the presence of still another additional condition in (1.91, namely, the condition of inversion 
of u'r: (0). It replaces the second boundary condition in (1.6). Therefore, the meaning of 
the above-mentioned transformations is elimination of one kind of boundary conditions out of 
the number of fundamental conditions and transferring it into an additional condition. It is 
essential that the coefficients of the problem for the function I(O) in the system of segments 
for 1 E I> 1 be equal, respectively, to the coefficients on the system of segments symmetric 
with respect to the circle j o 1 = 1 for 1 E 1 <i; this is ensured by the particular form of 
the matrix H = {h,,) 

h,,, = Re hl,, h2,. = 1 Im h,, (k. m = 1. 2). 

The functions H',; (w) here have simple poles at the points o = fl while xi.(z) for 
:= 11 would have exponents of number (0, -l/Z),i.e., uneliminable singularities at these 
points are transformed into eliminable ones. 
~1 is diagonal). 

Consequently, the problem was split (the matrix 
For each of the components of the vector W the solution is constructed by 

a method somewhat different from the traditional one /6/: we select the auxiliary functions 
such that the condition (1.9) could be realized in the most simple form, although the idea 
(factorization) would remain as before. The principle of a certain freedom of choice of the 
particular solution of the inhomogeneous problem is used here. The constraints (1.9) super- 
pose additional relations on the free coefficients of the solution of the homogeneous problem 
corresponding to (1.8). There remains consequently one independent real constant, which is 
in agreement with the general theorem /5/ about the number of these constants in the initial 
problem (1.3),(1.7). 

The general solution of (1.3),(1.7)-(1.9) is given by the formulas 

Uvx (CO) = II, (w) {F (w) 1, (co) - i (-lJk COG (w)} (1.10) 
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& = /(A - 0)1(.4 - o-l)f3k 
F= L=(o- 1)G 

lnlk,l 
(.-l - .4-l - 0 -o-‘)‘/’ ’ O-+1 , a,,=- 

2n 

-3 : ar;(.-l- &I) r;rr, I,==$ 
s 

ii.,” (E) dS 

r, Fwn,+(5)(2-W) . 

The auxiliary functions nti (0) serve the purpose of factorization 

nk+ (E;)KI,- (E) = h,, E E L,, nk+ wn,- (8 = I, i E L, 

and, moreover, possess the properties (we here present the properties of the functions W,'(E)) 

I&(O) = n* (liis), l&;(O) = n,(a) (1.11) 
Wk" (E) = -Wu',." (1.;) PI* Wk" (E) = u'"," (5) (Zc, m = 1, 2; 

m # 4 

The auxiliary functions F and G ensure thepresence of poles in the functions W,(w) at 
the points o = =I and the existence of integrals Z,(w) as well as, in combination with the 
functions nJC (a), compliance with conditions (1.9) and the estimates (1.3). For therealization 
of (1.9) they should be subjected to the following functional equation and the condition 

F (w) F (E) 
-=5jco= 

LF (l/S) 

WF (1.~) -m---O 
G (co) = - G(1!s) . 

The real constant C, and the angle q are to be determined. 

2. The constant CJ is determined from the condition that the moment of the forces applied 
from the media to the wedge equals zero. The condition that the principal stress vector 
equals zero is satisfied automatically because of the conditions taken at infinity (as can be 
showninthe same way as in /7,6/ when there is no term -1: in the asymptotic as z--t x the 
principal stress vector applied to the boundary from outside turns out to be zero). The jump 
in the contact pressures o(r) = -[o,~(I. O)l, 12 I< 1 is determined just by the auxiliary solution 

From the condition j1 so (I) dr = 0 we obtain, 

lb;,%, (1) - b;& (f)] rl’ I - r’di dz 

-7 

-1-l 
(h;~-bb;2])(‘-i)~‘l--*- . 

All the integrals that do not exist according to Riemann are understood in the principal 
value sense. If the media are identicai (b,, = b,?) and the wedge is symmetric (h,' E - h,'), 

then CJ = 0. 
We determine the constant C, by determining the jump in the displacement LT2 is some 

section of the wedge from the condition [L;? (I)1 = h (1). say. This is necessary since theproblem 

is posed in derivatives of the displacements. TG do this we integrate the complete value 

IC?,.l = -I (I) -2 p IIll i:. 1 :, 3 < (1, where the first and second components are contributions Of 
the solutions of the auxiliary and fundamental problems. On utilizing (l.ll), we obtain 

C,=[Zo-Zh(l))'I, I, = $ {i(i) - I,'-= Z'[E(r)] E(q) dx 

.x 

(2.1) 

It is here taken intc account that the quantity CL = a, is comparable to unity just for 
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values of the velocity c close to c~. otherwise a< 1 and the principal part in the 

expansion in this parameter can be separated out. The contribution of the Integration with 

respect to the small segment near the apex of the crack, where the oscillating singularity 

is essential, is estimated by the quantity 0 (at). 

It remains to verify the inequality in (1.1). The conditions #at u2$< 0 be continuous 
impose constraints on the wedge geometry: physically it is clear that these conditions are 
not satisfied for all hj(z). The condition of non-intersection of the crack edges and the 

cavity IU,l> 0 is certainly spoiled in a small neighbourhood of the point a and far from the 
wedge (as t---t -oo). This defect in the solution is corrected below. 

3. We will first consider the example of a wedge of rectangular profile. The complete 
solution will consist of the solution of the fundamental problem, where just from its 

homogeneous part (h,' (z) 3 0, cp = 0) 

X(4 _ 
I 

l-h(z) - l-L(L) 

iCoc(L)- s(nl(o) T b(z)) I/ 
( c,=-+ (3.1) 

nrG= ~(L~~/ZI-A)A)I(~-~I/rl---A)lia~ _ 
2J2 (a - 2) (z* - 1) z-x-ill. I%/<, 

erP rake WI 

Starting from (3.11, we compute the contact pressures that are identical on the upper 
and lower edges of the wedge ( 1~ I < 1) 

We obtain for the jump in the vertical velocity of the edges for z< --i and l<r<a: 

The energy flux u' /9/ can be computed by means of the concentration coefficients N 
and M 

li’ = + .V.11, (3.3) 

The flux IL(~) is negative, the energy goes from the point I = 1 into the medium; the flux 
W(-I) is positive, the energy is expended at the point 2 = -1. The sum of these energy 
fluxes is absorbed in the crack tip (the flux at infinity is zero) and, moreover, defines the 
lower bound of the magnitude of the horizontal force Q that must be applied to the wedge to 
maintain a given stationary motion, from the energetic inequality 

c~>-u~(l)-u~(-~)~Q> fi . 

To ensure equality on the right side of the first inequality in (3.4) the power expended 
in irreversible processes around the wedge angles should be added, and we obtain the energy 
balance equation for the wedge. 

The physical explanation for the appearance of energy fluxes of different sign at the 
wedge angles can be the following. If the wedge is considered with "smoothed" angles (the 
stresses are continuous at the separation points), then the stresses normal to the wedge 
surface will evidently perform work of different sign above the medium near the forward and 
rear points of separation, while the wedge will experience frontal resistance. 

In the general case, an integral of the projections of the normal stresses to the contour 
over the wedge contour on the z-axis should be added to the expression for the frontal 
resistance. The quantity Q is proportional to the square of the deformation, i.e., isreferred 
to the place of the quantities neglected in formulating the linear problem of elasticity theory 
(to remove the boundary conditions on the non-deformable surface) and is determined a posteriori. 
For this reason the assertion about the principal vector of the external forces applied to 
the boundary being equal to zero remains valid. 

The resistance to friction (the coefficients of friction are small) can be estimated by 
using the solution obtained as the zeroth approximation. 
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The stresses on the continuation of the crack (z> a,y = 0) equal 

Formulas for the velocities as x--r a - 0 have an analogous structure (and of anon-planar 
wedge in the general case). If the velocity c is not too close to CR, the domains where the 

condition [lJ21 20 is violated are located in the zone of the crack tip, and in the domain of 

the cavity far from the wedge. Consequently, the solution obtained can be considered as an 
external expansion with respect to the neighbourhoods of the points z = (1,~. We construct 
inner expansions below (the principal parts of the expansions are understood everywhere) by 
relying on the results in /lo/. Sections of edge contact with slip in the intervals -30 < 
z<-L and a- 1 <I< a are introduced here and it is assumed that L> a. I<( a - 1, i.e., 
L and 1 are large and small parameters (to be determined). These assumptions will subsequently 
be justified by calculations, but now provide a foundation for the asymptotic approach /ll/. 

4. Since knowledge of one coefficient K, determines the principal part of the field 

locally, given by the external expansion, we use an analogy with /lo/ for the solution of the 
inner problem having the domain of definition Iz - a !<a -i and the overlap domain I<lz- 
aI<a-I. We write the final result for the general case (2 is the inner variable) 

j x_ ilcll 1 UP -*” 
G I s(uP - a-y 1 

]%C, = COG (A) - iF (A) I, (A) E J, A iJ, (Re Jk = Jk, 
J/T- = 1) 
B=2Z- l-21*2’_ Z=(z-a)?. 

Por 12 1 =zt< 1, y = 0 we have 

a12 - K, [2x (z - a)F, u2? = 0 (1). z -+ a + 0 

u12 = 0, 
d 

UZ? - - - 
fi2 

p [~7(a-*)]“t co* s-a-o 

II‘ (a) = c (pq - d*) JW.0’ 
4P 

K 2 _ 
2 --.-) (a plane wedge) 

1= 
al-i 

2 ((l+v'FF) 
erp i - *I, y=2arctg.+ 

K:= -1-%((h+l)jC,I. 

(4.1) 

(4.3) 

The equation u’(1) -- ~(-1) 7 w(a) = 0 can be confirmed as the energy balance equation 
for the media. The angular distribution of the functions at the apex of a transverse shear 
crack on the interface is analysed in /l/. 

The asymptotic forms (l.lO), governing the behaviour of the soluticn as z-too,Imz>@ 
and imz < 0 are needed for the merger in the neighbourhood Z= 13 

We note that *he auxiliary solution does not take part in the construction of solutions 
in the neighbourhoods because of triviality. We seek the inner expansion in the domain j z I> 
0, 1 Z 1 G$ L a (2 = e?xI,!'z is the inner variable in this case) with the overlap domain a< Iz I(< 
L. 1< IZ /<L/a in a form analogous to /lo/ by turning attention to the behaviour for Izl> 

L 
i 

x=&I: 
TV,* - w,* j W, - W? ” 

. . i/ s (WI’ - Ii W?*) ,*z& ,; s (W, - W*) I/ . B 1 
(4.1) 

To seek the function w,.* (a) we obtain a homogeneous problem of the form (1.8) with 
merger conditions as O+O, 2. Asymptotic equalities can be established o-88LQ (U--+X. 
61-O). 0 - R!@L) (w - 0, 6! - s). that are valid in the overlap domain, and then the asymptotic 
form K',*(Q) can be calculated from (4.3) and (4.4) as R+O,x and the problem can besolved. 
We consequently obtain (L, like 1 also, is determined from the condition for suppressing the 
singularity at the point of contact /4,10/l 

I ,B*, / hR’-l - SW 
.,_ = T I/ (22) 7 /, s (XP- Q-i=) 
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For a plane wedge y= 6 = 0, otherwise TV6 =0(c), i.e., the parameters L and 1 CM be 
estimated by setting y = 6 = 0. It follows from the above that on(x, 0)<0 at the edge 
contact sections for x< -L and a - l<t< a. 

Therefore, the problem of the cleavage of an elastic bimaterial along the tinterface 
containing six singularities and nine dimensionless parameters (if the wedge shape is 
characterized by two quantities) is solved approximately by splitting into four separate 
problems. The influence of the parameters a, h is traced directly in the final formulas. 

5. We will now analyse the limit situations (in the other parameters) that is not so 
obvious. As C-CR, 0, K,, w U-i), u (a) -9 0 follow from (3.3)-(3.5),(4.2) if the crack length 

is fixed. If there is a lower bound Iii, [>K,>Othen a+1 as C-+CR. Thisisinqualitative 

agreement with the results /12/ where the motion of a semi-infinite wedge in a homogeneous 
medium is studied. However, it is necessary to refer to these deductions with care because 
as C-CR we have &a-, =, L,l+O (1) and the solution is meaningless. For near-Rayleigh 

velocities it is necessary to examine the problem mainly taking contact between the crack 
edges and the slot into account. Below we present values of L as functions of the parameters 

c, v1 h is Poisson's ratio, and medium 2 is rigid) 

Vl 0.1 0.3 0.45 
C'k 0 0.7 fJ.s5 0 0.7 0.9 0.8 0.9 0.93 
L 4.10' 92 5.7 2.10' 2.109 6.3 1.4.10' 56 7.4 

The quantities ZAl-‘i(a? - 1) will be an order of magnitude greater here. 
It is seen that over almost the whole interval (O,cR),L is a very lare number (because of 

the smallness of a in the exponent), where L=. 3 for values of c differing by X ;=2.50,, l.Gn;, 
0.9496 of cR for v1 = 0.1, 0.3, 0.45 (chic,, 0.893, 0.95. 0.949). respectively. Hence, the approximate 

solution found has the power of the exact solution for 0 < c <CR - c, e zz 0.02.~~; further 

refinement has no practical meaning. 
The problem of the motion of a non-symmetric wedge of finite length in a homogeneous 

medium with crack formation has apparently not been considered earlier. The passage to the 
limit p1 - ul, c,,,* - c,,,,, m = 1, 2 (1, + 1, d, a - 0, p -+ Zb,,, q + 2b,,. L -) 30, 14 0) is of interest. 

The domains of definition of the inner expansions in the external coordinates heredegenerate 
into a point, the external expansion becomes the exact solution, oscillations drop out, and 
(l.lO), (3.1) simplify because 

II* = 12 (a - z)l-';a, lYaG = I,* (-l)"-1 g (E)'J$ 

The approximate formulas (2.1) and (3.2) revert to exact formulas and the expressions for 
the stress components on the continuation of the crack take the form 

og? = fis (F K yy -w 15 (411 ( lJ12 -= La 
t 0 I/E 

formulas (4.1) become meaningless while (3.3),(3.4) and (4.2) are conserved. 
For c = cd, where cd is the root of d(c) = 0 (from the interval (0, c,,) possibly), there 

will be a = 0 and the above behaviour of the functions for the case of the homogeneous medium 
holds for this value of the velocity even for a piecewise-homogeneous medium /1,4/. When the 
elastic parameters of medium 2 vary (c = const) the lengths L and l vary between the values 
L = M, 1 = 0 (identical media) and the values 1, = mar 1, L, = minL (medium 2 is rigid). Let 
us compare the solutions for a homogeneous medium and the limit case of a piecewisehomogeneous 
medium: medium 2 is rigid, j&, c10,cz2 + 0~ i p-t b,,.q + b,,,d-, a, (c = const). Let a be fixed. Then 

we obtain for the ratio of the contact pressures that they are half in the caseofahomogeneous 
medium. The fluxes LC and the force Q are similarly related. 
fixed in the comparison, then the contact pressures, 

If the energy flux u’(a) is 
the fluxes I, and the force Q will 

be identical, while the crack lengths are different (the crack length is less forahomogeneous 
medium). 
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A SELFSIMILAR PROBLEM ON THE ACTION OF A SUDDiN LOAD ON 
THE BOUNDARY OF AN ELASTIC HALF-SPACE 

A.G. KULIKOVSKII and E.I. SVESBNIKOVA 

The solution of the non-linear problem of the action of a constant stress 
suddenly applied to the plane boundary of an elastic half-space that has 
homogeneous prestrain is investigated, The problem is selfsimilar, and 
its solution is constructed from shock and selfsimilar simple waves 
investigated earlier /l-5/. The problem under consideration is the 
necessary element that should be contained in solutions of different non- 
stationary problems, for instance, in the problem of the decay of an 
arbitrary initial discontinuity. Moreover, the selfsimilar solution 
constructed below represents the asymptotic form long times of the 
corresponding non-selfsimilar problems when the stress on the half-space 
boundary varies from some values to others according to an arbitrary law 
over a limited time. 

1. Formulation of the problem. A homogeneous isotropic non-linearly elastic 
medium is given by its internal energy u (E,~.S) in the form /l-5/ 
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Here S is the entropy, cij are the components of Green's strain tensor, ixi is the 
displacement vector, p0 is the density in the unstressed state, and E, are the Lagrange 
coordinates that are rectangular Cartesian coordinates in the unstressed state. 

The medium that possesses a small homogeneous initial strain occupies the half-space 

El > 0. At the time t = 0 a stress that alters the state of strain on the boundary is applied 
to the boundary ES = 0 and later remains constant. The problem is selfsimilar, and the 
solution depends on E3. 1. A perturbation from the boundary in the domain Es>0 propagates 
in the form of plane strain waves in which only the following components of the displacement 
gradient vary: au:,!ai;3 = u, au.,/a:3 = L', a~,laE~ = u-'. We designate by L;, V,u*‘, respectively, the 

initial magnitudes of these strain components, and we denote those values which they acquire 
on the boundary subjected to the action of the suddenly applied stress by u*, v*, w,, 
respectively. 

In addition to the above, the medium also possesses other strain components that do not 
vary in this problem and play the part of parameters. These components are en and eZ1. The 


